Module: Benchmarking#

⭐⭐⭐⭐ | ⏱️ 4-5 hours

πŸ“Š Module Info#

  • Difficulty: ⭐⭐⭐⭐ Advanced

  • Time Estimate: 6-8 hours

  • Prerequisites: All previous modules (01-12), especially Kernels

  • Next Steps: MLOps module (14)

Learn to systematically evaluate ML systems using industry-standard benchmarking methodology. This module teaches you to measure performance reliably, validate optimization claims, and create professional evaluation reports that meet research and industry standards.

🎯 Learning Objectives#

By the end of this module, you will be able to:

  • Design systematic benchmarking experiments: Apply MLPerf-inspired methodology to evaluate ML system performance

  • Implement statistical validation: Ensure benchmark results are statistically significant and reproducible

  • Create professional performance reports: Generate industry-standard documentation for optimization claims

  • Apply evaluation methodology: Systematically compare models, optimizations, and architectural choices

  • Debug performance systematically: Use benchmarking to identify bottlenecks and validate improvements

🧠 Build β†’ Use β†’ Analyze#

This module follows TinyTorch’s Build β†’ Use β†’ Analyze framework:

  1. Build: Implement comprehensive benchmarking framework with MLPerf-inspired architecture and statistical validation

  2. Use: Apply systematic evaluation to TinyTorch models, optimizations, and performance claims

  3. Analyze: Generate professional reports, validate optimization effectiveness, and prepare results for presentations

πŸ“š What You’ll Build#

MLPerf-Inspired Benchmarking Framework#

# Professional ML system evaluation
from tinytorch.core.benchmarking import TinyTorchPerf, StatisticalValidator

# Configure benchmark system
benchmark = TinyTorchPerf()
benchmark.set_model(your_trained_model)
benchmark.set_dataset('cifar10', subset_size=1000)
benchmark.set_metrics(['latency', 'throughput', 'accuracy'])

# Run comprehensive evaluation
results = benchmark.run_all_scenarios([
    'single_stream',    # Latency-focused (mobile/edge)
    'server',          # Throughput-focused (production)
    'offline'          # Batch processing (data center)
])

print(f"Single-stream latency: {results['single_stream']['latency']:.2f}ms")
print(f"Server throughput: {results['server']['throughput']:.0f} samples/sec")
print(f"Offline batch time: {results['offline']['batch_time']:.2f}s")

Statistical Validation System#

# Ensure statistically valid results
validator = StatisticalValidator(confidence_level=0.95, min_runs=30)

# Compare two models with statistical rigor
baseline_model = load_model("baseline_v1")
optimized_model = load_model("optimized_v2")

comparison = validator.compare_models(
    baseline_model, 
    optimized_model, 
    test_dataset,
    metrics=['latency', 'accuracy']
)

if comparison['latency']['significant']:
    speedup = comparison['latency']['improvement']
    confidence = comparison['latency']['confidence_interval']
    print(f"βœ… Speedup: {speedup:.2f}x (95% CI: {confidence[0]:.2f}-{confidence[1]:.2f})")
else:
    print("❌ Performance difference not statistically significant")

Comprehensive Performance Reporter#

# Generate professional evaluation reports
from tinytorch.core.benchmarking import PerformanceReporter

reporter = PerformanceReporter()
report = reporter.generate_comprehensive_report({
    'models': [baseline_model, optimized_model, compressed_model],
    'datasets': ['cifar10', 'imagenet_subset'],
    'scenarios': ['mobile', 'server', 'edge'],
    'optimizations': ['baseline', 'quantized', 'pruned', 'kernels']
})

# Export professional documentation
report.save_as_html("performance_evaluation.html")
report.save_as_pdf("performance_evaluation.pdf")
report.save_summary_table("results_summary.csv")

# Generate presentation slides
report.create_presentation_slides("optimization_results.pptx")

Real-World Evaluation Scenarios#

# Mobile deployment evaluation
mobile_benchmark = TinyTorchPerf()
mobile_benchmark.configure_mobile_scenario(
    max_latency_ms=100,
    battery_constraints=True,
    memory_limit_mb=50
)

mobile_results = mobile_benchmark.evaluate_model(compressed_model)
mobile_feasible = mobile_results['meets_constraints']

# Production server evaluation
server_benchmark = TinyTorchPerf()
server_benchmark.configure_server_scenario(
    target_throughput=1000,  # requests/second
    max_latency_p99=50,      # 99th percentile latency
    concurrent_users=100
)

server_results = server_benchmark.evaluate_model(optimized_model)
production_ready = server_results['meets_sla']

πŸš€ Getting Started#

Prerequisites#

Ensure you have built the complete TinyTorch system:

# Activate TinyTorch environment
source bin/activate-tinytorch.sh

# Verify prerequisite modules (comprehensive system needed)
tito test --module kernels      # Performance optimization
tito test --module compression  # Model optimization
tito test --module training     # End-to-end training

Development Workflow#

  1. Open the development file: modules/source/13_benchmarking/benchmarking_dev.py

  2. Implement benchmarking framework: Build MLPerf-inspired evaluation system

  3. Add statistical validation: Ensure reproducible and significant results

  4. Create performance reporters: Generate professional documentation

  5. Test evaluation scenarios: Apply to real models and optimization claims

  6. Export and verify: tito export --module benchmarking && tito test --module benchmarking

πŸ§ͺ Testing Your Implementation#

Comprehensive Test Suite#

Run the full test suite to verify benchmarking system functionality:

# TinyTorch CLI (recommended)
tito test --module benchmarking

# Direct pytest execution
python -m pytest tests/ -k benchmarking -v

Test Coverage Areas#

  • βœ… Benchmarking Framework: Verify MLPerf-inspired evaluation system works correctly

  • βœ… Statistical Validation: Test confidence intervals, significance testing, and reproducibility

  • βœ… Performance Reporting: Ensure professional report generation and data visualization

  • βœ… Scenario Testing: Validate mobile, server, and offline evaluation scenarios

  • βœ… Integration Testing: Test with real TinyTorch models and optimizations

Inline Testing & Evaluation Validation#

The module includes comprehensive benchmarking validation and methodology verification:

# Example inline test output
πŸ”¬ Unit Test: MLPerf-inspired benchmark framework...
βœ… Single-stream scenario working correctly
βœ… Server scenario measures throughput accurately
βœ… Offline scenario handles batch processing
πŸ“ˆ Progress: Benchmarking Framework βœ“

# Statistical validation testing
πŸ”¬ Unit Test: Statistical significance testing...
βœ… Confidence intervals computed correctly
βœ… Multiple comparison correction applied
βœ… Minimum sample size requirements enforced
πŸ“ˆ Progress: Statistical Validation βœ“

# Report generation testing
πŸ”¬ Unit Test: Performance report generation...
βœ… HTML reports generated with proper formatting
βœ… Summary tables include all required metrics
βœ… Visualization charts display correctly
πŸ“ˆ Progress: Professional Reporting βœ“

Manual Testing Examples#

from benchmarking_dev import TinyTorchPerf, StatisticalValidator
from networks_dev import Sequential
from layers_dev import Dense
from activations_dev import ReLU

# Create test models
baseline_model = Sequential([Dense(784, 128), ReLU(), Dense(128, 10)])
optimized_model = compress_model(baseline_model, compression_ratio=0.5)

# Set up benchmarking
benchmark = TinyTorchPerf()
benchmark.set_dataset('synthetic', size=1000, input_shape=(784,), num_classes=10)

# Run evaluation
baseline_results = benchmark.evaluate_model(baseline_model)
optimized_results = benchmark.evaluate_model(optimized_model)

print(f"Baseline latency: {baseline_results['latency']:.2f}ms")
print(f"Optimized latency: {optimized_results['latency']:.2f}ms")
print(f"Speedup: {baseline_results['latency']/optimized_results['latency']:.2f}x")

# Statistical validation
validator = StatisticalValidator()
comparison = validator.compare_models(baseline_model, optimized_model, test_data)
print(f"Statistically significant: {comparison['significant']}")

🎯 Key Concepts#

Real-World Applications#

  • MLPerf Benchmarks: Industry-standard evaluation methodology for ML systems and hardware

  • Production A/B Testing: Statistical validation of model improvements in live systems

  • Research Paper Evaluation: Rigorous experimental methodology for academic publication

  • Hardware Evaluation: Systematic comparison of ML accelerators and deployment platforms

Evaluation Methodology#

  • Systematic Experimentation: Controlled variables, multiple runs, and statistical validation

  • Scenario-Based Testing: Mobile, server, and edge deployment evaluation patterns

  • Performance Metrics: Latency, throughput, accuracy, memory usage, and energy consumption

  • Statistical Rigor: Confidence intervals, significance testing, and reproducibility requirements

Professional Reporting#

  • Industry Standards: MLPerf-style reporting with comprehensive metrics and statistical validation

  • Visual Communication: Charts, tables, and graphs that clearly communicate performance results

  • Executive Summaries: High-level findings suitable for technical and business stakeholders

  • Reproducibility: Complete methodology documentation for result verification

Benchmarking Best Practices#

  • Baseline Establishment: Proper reference points for meaningful comparisons

  • Environment Control: Consistent hardware, software, and data conditions

  • Statistical Power: Sufficient sample sizes for reliable conclusions

  • Bias Avoidance: Careful experimental design to prevent misleading results

πŸŽ‰ Ready to Build?#

You’re about to master the evaluation methodology that separates rigorous engineering from wishful thinking! This module teaches you to validate claims, measure improvements systematically, and communicate results professionally.

Every major breakthrough in MLβ€”from ImageNet winners to production systemsβ€”depends on systematic evaluation like what you’re building. You’ll learn to think like a performance scientist, ensuring your optimizations actually work and proving it with statistical rigor. Take your time, be thorough, and enjoy building the foundation of evidence-based ML engineering!

Choose your preferred way to engage with this module:

πŸš€ Launch Binder

Run this module interactively in your browser. No installation required!

https://mybinder.org/v2/gh/mlsysbook/TinyTorch/main?filepath=modules/source/14_benchmarking/benchmarking_dev.ipynb
πŸ“– View Source

Browse the Python source code and understand the implementation.

https://github.com/mlsysbook/TinyTorch/blob/main/modules/source/14_benchmarking/benchmarking_dev.py

πŸ’Ύ Save Your Progress

Binder sessions are temporary! Download your completed notebook when done, or switch to local development for persistent work.