Module: Benchmarking#
โญโญโญโญ | โฑ๏ธ 4-5 hours
๐ Module Info#
Difficulty: โญโญโญโญ Advanced
Time Estimate: 6-8 hours
Prerequisites: All previous modules (01-12), especially Kernels
Next Steps: MLOps module (14)
Learn to systematically evaluate ML systems using industry-standard benchmarking methodology. This module teaches you to measure performance reliably, validate optimization claims, and create professional evaluation reports that meet research and industry standards.
๐ฏ Learning Objectives#
By the end of this module, you will be able to:
Design systematic benchmarking experiments: Apply MLPerf-inspired methodology to evaluate ML system performance
Implement statistical validation: Ensure benchmark results are statistically significant and reproducible
Create professional performance reports: Generate industry-standard documentation for optimization claims
Apply evaluation methodology: Systematically compare models, optimizations, and architectural choices
Debug performance systematically: Use benchmarking to identify bottlenecks and validate improvements
๐ง Build โ Use โ Analyze#
This module follows TinyTorchโs Build โ Use โ Analyze framework:
Build: Implement comprehensive benchmarking framework with MLPerf-inspired architecture and statistical validation
Use: Apply systematic evaluation to TinyTorch models, optimizations, and performance claims
Analyze: Generate professional reports, validate optimization effectiveness, and prepare results for presentations
๐ What Youโll Build#
MLPerf-Inspired Benchmarking Framework#
# Professional ML system evaluation
from tinytorch.core.benchmarking import TinyTorchPerf, StatisticalValidator
# Configure benchmark system
benchmark = TinyTorchPerf()
benchmark.set_model(your_trained_model)
benchmark.set_dataset('cifar10', subset_size=1000)
benchmark.set_metrics(['latency', 'throughput', 'accuracy'])
# Run comprehensive evaluation
results = benchmark.run_all_scenarios([
'single_stream', # Latency-focused (mobile/edge)
'server', # Throughput-focused (production)
'offline' # Batch processing (data center)
])
print(f"Single-stream latency: {results['single_stream']['latency']:.2f}ms")
print(f"Server throughput: {results['server']['throughput']:.0f} samples/sec")
print(f"Offline batch time: {results['offline']['batch_time']:.2f}s")
Statistical Validation System#
# Ensure statistically valid results
validator = StatisticalValidator(confidence_level=0.95, min_runs=30)
# Compare two models with statistical rigor
baseline_model = load_model("baseline_v1")
optimized_model = load_model("optimized_v2")
comparison = validator.compare_models(
baseline_model,
optimized_model,
test_dataset,
metrics=['latency', 'accuracy']
)
if comparison['latency']['significant']:
speedup = comparison['latency']['improvement']
confidence = comparison['latency']['confidence_interval']
print(f"โ
Speedup: {speedup:.2f}x (95% CI: {confidence[0]:.2f}-{confidence[1]:.2f})")
else:
print("โ Performance difference not statistically significant")
Comprehensive Performance Reporter#
# Generate professional evaluation reports
from tinytorch.core.benchmarking import PerformanceReporter
reporter = PerformanceReporter()
report = reporter.generate_comprehensive_report({
'models': [baseline_model, optimized_model, compressed_model],
'datasets': ['cifar10', 'imagenet_subset'],
'scenarios': ['mobile', 'server', 'edge'],
'optimizations': ['baseline', 'quantized', 'pruned', 'kernels']
})
# Export professional documentation
report.save_as_html("performance_evaluation.html")
report.save_as_pdf("performance_evaluation.pdf")
report.save_summary_table("results_summary.csv")
# Generate presentation slides
report.create_presentation_slides("optimization_results.pptx")
Real-World Evaluation Scenarios#
# Mobile deployment evaluation
mobile_benchmark = TinyTorchPerf()
mobile_benchmark.configure_mobile_scenario(
max_latency_ms=100,
battery_constraints=True,
memory_limit_mb=50
)
mobile_results = mobile_benchmark.evaluate_model(compressed_model)
mobile_feasible = mobile_results['meets_constraints']
# Production server evaluation
server_benchmark = TinyTorchPerf()
server_benchmark.configure_server_scenario(
target_throughput=1000, # requests/second
max_latency_p99=50, # 99th percentile latency
concurrent_users=100
)
server_results = server_benchmark.evaluate_model(optimized_model)
production_ready = server_results['meets_sla']
๐ Getting Started#
Prerequisites#
Ensure you have built the complete TinyTorch system:
# Activate TinyTorch environment
source bin/activate-tinytorch.sh
# Verify prerequisite modules (comprehensive system needed)
tito test --module kernels # Performance optimization
tito test --module compression # Model optimization
tito test --module training # End-to-end training
Development Workflow#
Open the development file:
modules/source/13_benchmarking/benchmarking_dev.py
Implement benchmarking framework: Build MLPerf-inspired evaluation system
Add statistical validation: Ensure reproducible and significant results
Create performance reporters: Generate professional documentation
Test evaluation scenarios: Apply to real models and optimization claims
Export and verify:
tito export --module benchmarking && tito test --module benchmarking
๐งช Testing Your Implementation#
Comprehensive Test Suite#
Run the full test suite to verify benchmarking system functionality:
# TinyTorch CLI (recommended)
tito test --module benchmarking
# Direct pytest execution
python -m pytest tests/ -k benchmarking -v
Test Coverage Areas#
โ Benchmarking Framework: Verify MLPerf-inspired evaluation system works correctly
โ Statistical Validation: Test confidence intervals, significance testing, and reproducibility
โ Performance Reporting: Ensure professional report generation and data visualization
โ Scenario Testing: Validate mobile, server, and offline evaluation scenarios
โ Integration Testing: Test with real TinyTorch models and optimizations
Inline Testing & Evaluation Validation#
The module includes comprehensive benchmarking validation and methodology verification:
# Example inline test output
๐ฌ Unit Test: MLPerf-inspired benchmark framework...
โ
Single-stream scenario working correctly
โ
Server scenario measures throughput accurately
โ
Offline scenario handles batch processing
๐ Progress: Benchmarking Framework โ
# Statistical validation testing
๐ฌ Unit Test: Statistical significance testing...
โ
Confidence intervals computed correctly
โ
Multiple comparison correction applied
โ
Minimum sample size requirements enforced
๐ Progress: Statistical Validation โ
# Report generation testing
๐ฌ Unit Test: Performance report generation...
โ
HTML reports generated with proper formatting
โ
Summary tables include all required metrics
โ
Visualization charts display correctly
๐ Progress: Professional Reporting โ
Manual Testing Examples#
from benchmarking_dev import TinyTorchPerf, StatisticalValidator
from networks_dev import Sequential
from layers_dev import Dense
from activations_dev import ReLU
# Create test models
baseline_model = Sequential([Dense(784, 128), ReLU(), Dense(128, 10)])
optimized_model = compress_model(baseline_model, compression_ratio=0.5)
# Set up benchmarking
benchmark = TinyTorchPerf()
benchmark.set_dataset('synthetic', size=1000, input_shape=(784,), num_classes=10)
# Run evaluation
baseline_results = benchmark.evaluate_model(baseline_model)
optimized_results = benchmark.evaluate_model(optimized_model)
print(f"Baseline latency: {baseline_results['latency']:.2f}ms")
print(f"Optimized latency: {optimized_results['latency']:.2f}ms")
print(f"Speedup: {baseline_results['latency']/optimized_results['latency']:.2f}x")
# Statistical validation
validator = StatisticalValidator()
comparison = validator.compare_models(baseline_model, optimized_model, test_data)
print(f"Statistically significant: {comparison['significant']}")
๐ฏ Key Concepts#
Real-World Applications#
MLPerf Benchmarks: Industry-standard evaluation methodology for ML systems and hardware
Production A/B Testing: Statistical validation of model improvements in live systems
Research Paper Evaluation: Rigorous experimental methodology for academic publication
Hardware Evaluation: Systematic comparison of ML accelerators and deployment platforms
Evaluation Methodology#
Systematic Experimentation: Controlled variables, multiple runs, and statistical validation
Scenario-Based Testing: Mobile, server, and edge deployment evaluation patterns
Performance Metrics: Latency, throughput, accuracy, memory usage, and energy consumption
Statistical Rigor: Confidence intervals, significance testing, and reproducibility requirements
Professional Reporting#
Industry Standards: MLPerf-style reporting with comprehensive metrics and statistical validation
Visual Communication: Charts, tables, and graphs that clearly communicate performance results
Executive Summaries: High-level findings suitable for technical and business stakeholders
Reproducibility: Complete methodology documentation for result verification
Benchmarking Best Practices#
Baseline Establishment: Proper reference points for meaningful comparisons
Environment Control: Consistent hardware, software, and data conditions
Statistical Power: Sufficient sample sizes for reliable conclusions
Bias Avoidance: Careful experimental design to prevent misleading results
๐ Ready to Build?#
Youโre about to master the evaluation methodology that separates rigorous engineering from wishful thinking! This module teaches you to validate claims, measure improvements systematically, and communicate results professionally.
Every major breakthrough in MLโfrom ImageNet winners to production systemsโdepends on systematic evaluation like what youโre building. Youโll learn to think like a performance scientist, ensuring your optimizations actually work and proving it with statistical rigor. Take your time, be thorough, and enjoy building the foundation of evidence-based ML engineering!
Choose your preferred way to engage with this module:
Run this module interactively in your browser. No installation required!
Use Google Colab for GPU access and cloud compute power.
Browse the Python source code and understand the implementation.
๐พ Save Your Progress
Binder sessions are temporary! Download your completed notebook when done, or switch to local development for persistent work.
Ready for serious development? โ ๐๏ธ Local Setup Guide